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A PROOF OF THE CONJECTURE OF COHEN AND MULLEN

ON SUMS OF PRIMITIVE ROOTS

STEPHEN D. COHEN, TOMÁS OLIVEIRA E SILVA, AND TIM TRUDGIAN

Abstract. We prove that for all q > 61, every non-zero element in the finite

field Fq can be written as a linear combination of two primitive roots of Fq .
This resolves a conjecture posed by Cohen and Mullen.

1. Introduction

For q a prime power, let Fq denote the finite field of order q, and let g1, g2, . . . ,
gφ(q−1) denote the primitive roots of q. Various questions have been asked about
whether non-zero elements of Fq can be written as a linear sum of two primitive
roots, g1 and g2. To develop this idea, let a, b and c be arbitrary non-zero elements
in Fq. Is there some q0 such that there is always one representation

(1) a = bgn + cgm

for all q > q0? Since such a representation is possible if and only if a/b = gn+c/b gm,
we may suppose that b = 1 in (1). Accordingly, define G to be the set of prime
powers q such that for all non-zero a, c ∈ Fq there exists a primitive root g ∈ Fq
such that a− cg is also a primitive root of Fq.

It appears that Vegh [10] was the first to consider a specific form of (1), namely,
that with b = 1 and c = −1. This has been referred to as Vegh’s Conjecture —
see [7, §F9]. Vegh verified his own conjecture for 61 < q < 2000; Szalay [9] proved
it for q > q0 and claimed that one could take q0 = 1019. In the special case when
a = 1, Cohen [2] proved Vegh’s conjecture for all q > 7.

Golomb [6] proposed (1) with b = 1 and c = 1. This has applications to Costas
arrays, which appear in the study of radar and sonar signals. This was proved by
Sun [8] for q > 260 ≈ 1.15× 1018.

Cohen and Mullen [5] considered (1) in its most general form, namely b = 1
and arbitrary non-zero c and a. Cohen [3] calls this ‘Conjecture G’. Cohen and
Mullen proved Conjecture G for all q ≥ 4.79 × 108; Cohen [3] proved it for all
q ≥ 3.854× 107, and states that it is true for even q > 4; it is false for q = 4. Chou,
Mullen, Shiue and Sun [1] tested it for odd q < 2130 and found that it failed only
for q = 3, 5, 7, 11, 13, 19, 31, 43, and 61. Thus, in effect, Conjecture G can be
interpreted as claiming that all prime powers exceeding 61 lie in the set G. What
this means is that ‘all’ one needs to do is to check (1) for 2130 ≤ q ≤ 3.854× 107.
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We improve on Cohen’s method, given in [3], to isolate easily the possible coun-
terexamples to Conjecture G. We compile an initial list of values of q that may need
checking. We then examine this list in more detail, sieving out some values of q.
This produces a secondary list of only 777 values of q with 2131 ≤ q ≤ 2762761.
This list is just small enough to enable us to verify (1) for each q. The result is:

Theorem 1. For q > 61 and for arbitrary non-zero elements a, b, c of Fq, there
is always one representation of the form

a = bgn + cgm,

where gn and gm are primitive roots of Fq.

2. Theory

Let ω(n) denote the number of distinct prime factors of n so that W (n) = 2ω(n)

is the number of square-free divisors of n. Also, let θ(n) =
∏
p|n(1 − p−1). From

the working of [3] (see also [5]) one can conclude that a prime power q ∈ G if
q > W (q − 1)4 and hence if ω(q − 1) ≥ 16 or q > 260. More significantly, a sieving
method was given yielding improved lower bounds for q guaranteeing membership
of G. Instead of W (q− 1), these depend on appropriate choices of divisors e1, e2 of
q− 1 and the quantities W (ei) and θei , i = 1, 2, and can be applied to successively
smaller values of ω(q − 1) ≤ 15. In particular, it was shown that, if ω(q − 1) ≥ 9,
then q ∈ G. Further, for each value of ω(q− 1) ≤ 8 an upper bound can be derived
on the set of prime power values requiring further analysis.

It turns out that the lists of possible exceptions that are thereby obtained from
the method of [3] are small enough for direct computer verification on contemporary
computer hardware. However, we can do better, as we now proceed to show. For
any integer n define its radical Rad(n) as the product of all distinct prime factors
of n. In the appendix we prove

Theorem 2. Let q ≥ 4 be a prime power. Let e be a divisor of q − 1. If Rad(e) =
Rad(q − 1) set s = 0 and δ = 1. Otherwise, let p1, . . . , ps, s ≥ 1, be the primes
dividing q − 1 but not e and set δ = 1− 2

∑s
i=1 p

−1
i . Suppose that δ is positive and

that

(2) q >

(
2s− 1

δ
+ 2

)2

W (e)4.

Then q ∈ G.

As an example of the usefulness of this theorem, consider the case ω(q− 1) = 8.
For s = 5 we have W (e) = 8 and δ ≥ 1 − 2

(
1
7 + 1

11 + 1
13 + 1

17 + 1
19

)
. Therefore

the right hand side of (2) is at most 14647129.006, and so q > 14647129 guarantees
membership in G when ω(q − 1) = 8. Moreover, up to 14647129 there is only one
prime power with ω(q−1) = 8, namely q = 13123111 = 2 ·3 ·5 ·7 ·11 ·13 ·19 ·23+1.
Using again Theorem 2, still with s = 5 but this time with δ = 1− 2

(
1
7 + 1

11 + 1
13 +

1
19 + 1

23

)
tailored to the specific value of q, allows us to conclude that 13123111 ∈ G.

We repeat the procedure for 1 ≤ ω(q − 1) ≤ 7, and q ≥ 2130, each time noting
the upper bound of the intervals that need further analysis. These are reported in
the second column in Table 1. We then enumerate all possible q and eliminate as
many values as we can by checking if (2) is true for some value of s. We are left
with a final list of values of q that need checking. Column 3 of Table 1 contains
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the largest elements of these lists; Columns 4 and 5 contain respectively the initial
and final number of elements of these lists, discriminating primes (on the left of the
summation sign) and prime powers (on the right of the summation sign).

Table 1. Improved bounds for q

ω(q − 1) Upper bound Largest q Initial list size Final list size
8 14647129 — 1 + 0 0 + 0
7 3402711 2762761 78 + 1 22 + 1
6 947062 840841 635 + 6 162 + 4
5 238715 231001 1741 + 21 290 + 9
4 34124 33601 1024 + 24 259 + 10
3 3441 4057 84 + 5 16 + 4

It is worthwhile to mention that the largest value that needs to be verified
(2762761) is considerably smaller than the largest value that, according to [3],
would have to be verified (25555531).

3. Computation

Let q = pk, where p is a prime. When k = 1 the full finite field machinery
is not needed to test Conjecture G. For efficiency reasons, we thus developed two
programs to test it: one to deal with the case k = 1, and another to deal with the
case k > 1.

3.1. Verification of Conjecture G when q = p. One way to verify Conjec-
ture G for a given value of p is to call Algorithm 1 (or Algorithm 2) for c =
1, 2, . . . , p − 1. If it returns success in all cases then Conjecture G is true. Other-
wise it is false.

Algorithm 1: Verification that for every non-zero element a of Fp there exist
two primitive roots also of Fp, gm and gn, such that a = gn + cgm.

1 Set t0 to 1, set t1, t2, . . . , tp−1 to 0, and set r to p− 1

2 for m = 1, 2, . . . , φ(p− 1) do
3 Set d to cgm
4 for n = 1, 2, . . . , φ(p− 1) do
5 Set a to gn + d

6 if ta is equal to 0 then set ta to 1 and decrease r

7 if r is equal to 0 then terminate with success

8 Terminate with failure

If at some point during the execution of Algorithm 1 ta is equal to 0 then no
solution to a = gn + cgm was found up to that point. Note that r counts the
number of ta’s that are still equal to 0. For small values of m, Algorithm 1 is quite
efficient at discarding values of a, but when r starts to become much smaller than
φ(p− 1) it becomes inefficient. Algorithm 2 handles small values of r better, but is
less efficient than Algorithm 1 when r is large.
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Algorithm 2: Verification that for every non-zero element a of Fp there exist
two primitive roots also of Fp, gm and gn, such that a = gn + cgm.

1 Set a1 to 1, a2 to 2, . . . , ap−1 to p− 1, and set r to p− 1

2 for m = 1, 2, . . . , φ(p− 1) do
3 Set i to 1 and set d to cgm
4 while i ≤ r do
5 Set j to ai − d
6 if j is a primitive root then
7 Set ai to ar and decrease r

8 else
9 Increase i

10 if r is equal to 0 then terminate with success

11 Terminate with failure

Note that a1, . . . , ar hold the r values of a for which no solution of a = gn + cgm
has yet been found. It is quite easy to switch from the first algorithm to the second
and vice versa at the point where a new value of m is to be considered. We leave
the easy details about how to do this for the reader to amuse herself/himself. In our
implementation of these algorithms, we switch from the first to the second as soon
as r drops below 0.25φ(p − 1). For our range of values of p, the hybrid algorithm
has an execution time that is very nearly proportional to p.

The verification of Conjecture G for a given value of p can be done easily in
parallel by assigning different ranges of values of c (a work unit) to each of the
available processor cores. This was done for the 749 prime values of q that, according
to Table 1 had to be tested. Using an Intel Core 2 Duo E8400 processor running at
3.0 GHz this took about 12.4 one-core days. In all cases it was found that q ∈ G. A
second run of the program, on an Intel Core i5-2400 processor running at 3.1 GHz,
produced exactly the same results for each work unit, with the obvious exception
of execution times, and required 13.4 one-core days. (This second run was slower
due to data cache effects.) For each work unit we recorded the number of times
the hybrid algorithm terminated with a given value of m and we computed a 32-bit
cyclic redundancy checksum that depended on the values of some variables at key
points of the hybrid algorithm.

For our first run, it took approximately 1.3×10−8 p2 seconds to test Conjecture G
for a given value of p. For p above 103 our algorithm terminated with success for

an average value of m that was close to log
(

1
2p

)
/ log

(
1− φ(p−1)

p

)
.

To double-check the results of [1], we also ran our programs for all primes up
to 2130. As expected, we found that Conjecture G is false only for q = 3, q = 5,
q = 7, q = 11, q = 13, q = 19, q = 31, q = 43, and q = 61.

While the two runs of the program were underway, we found a way to share
most of the work needed to test several values of c, thus giving rise to a much more
efficient program. The key to this improvement is the observation that in (1) c
appears multiplied by gm. Thus, if instead of iterating on m on the outer loops
of Algorithms 1 and 2 we iterate on carefully chosen values of the product cgm,
which we denote by d, then it becomes possible to exclude the same value of a
simultaneously for several different c’s, also carefully chosen.
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To explain how this is done, let g be one primitive root of Fp, let u be the largest

non-repeated prime factor of p−1, and let v = (p−1)/u. The set G = { g1+iv }u−1
i=0

contains exactly u − 1 primitive roots and exactly one non-primitive root, which
will be denoted by z. Since g is a primitive root the sets Co = { go+iv }u−1

i=0 ,
0 ≤ o ≤ v − 1, are pairwise disjoint and their union is the set of the non-zero
elements of Fp. Moreover, the set formed by the products of one member of G and
one member of Co is Co+1 (note that Cp = C0). Let C ′o be a non empty proper
subset of Co, and let C ′′o+1 be the corresponding subset of Co+1 whose members are
obtained by multiplying the members of C ′o by the non-primitive root z. To test
simultaneously the values of c belonging to C ′o, we use as values of d the complement
of C ′′o+1, i.e., the set Co+1 − C ′′o+1. This ensures, for every c ∈ C ′o, that d is the
product of c and a primitive root of G. These observations give rise to Algorithm 3.

Algorithm 3: Efficient verification that for c ∈ C ′o and for every non-zero
element a of Fp there exist two primitive roots also of Fp, gm and gn, such that
a = gn + cgm.

1 Set t0 to 1, set t1, t2, . . . , tp−1 to 0, and set r to p− 1

2 for d belonging to the complement of C ′′o+1 do
3 for n = 1, 2, . . . , φ(p− 1) do
4 Set a to gn + d

5 if ta is equal to 0 then set ta to 1 and decrease r

6 if r is equal to 0 then terminate with success

7 for c ∈ C ′o do
8 Run Algorithm 1 with a copy of the ta and r variables, beginning it at

line 2

9 Terminate with failure if Algorithm 1 failed

10 Terminate with success

To test Conjecture G for c ∈ Co it is obviously necessary to run Algorithm 3
twice: once for C ′o and once more with C ′o replaced by its complement. For that
reason, to make the entire testing effort more efficient, C ′o and its complement
should have approximately the same number of members (as u is usually odd,
one should have one more member than the other). As before, the verification of
Conjecture G for a given value of p can easily be done in parallel, now by assigning
different ranges of values of o to each of the available processor cores. This was
done for the 749 primes values of q that had to be tested. Taking only 2.7 one-core
days plus 1.9 days for double-checking, this computation confirmed the results of
our first two runs.

3.2. Verification of Conjecture G when q = pk. We have chosen to represent

a generic element a of Fq by the polynomial
∑k−1
i=0 akx

k of formal degree k − 1
with coefficients in Fp, and henceforth to do multiplications in Fq using polynomial
arithmetic modulo a monic irreducible polynomial of degree k. Since all finite fields
with q elements are isomorphic to each other, any irreducible polynomial will do.
Since we also need a primitive root, instead of finding first an irreducible polynomial
and then finding a primitive root for that particular model of the finite field, we fix
the primitive root (for convenience we have chosen g = x), and then find a monic
polynomial of degree k for which gq−1 = 1 and for which g(q−1)/f 6= 1 for each
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prime factor f of q − 1. This ensures that the polynomial is indeed primitive and
that g is one of its primitive roots.

Although the arithmetic operations are different when q = pk, the main ideas
of the three algorithms presented above remain valid. In all three algorithms it is
necessary to replace p by q. In addition, in Algorithm 1 it is necessary to replace in
line 6 ta by ta′ , where a′ is the value of the polynomial that represents a for x = p,
because a was being used there as an index. Likewise for Algorithm 3 in line 5. In
Algorithm 2 it is necessary to replace the way the aj variables are initialised, since
these are now polynomials with coefficients aji.

Using Algorithm 2, it took 7.0 days on a single core of a 2.8 GHz processor, plus
11.9 days to double-check the results on a slower processor, to check the conjecture
for the 28 prime powers that had to be tested. In all cases it was found that q ∈ G.

Finally, to double check the results of [1], we also ran our programs for all prime
powers up to 2130. As expected, we found that Conjecture G is false only for q = 4.

Appendix A. Proof of Theorem 2

Sieving methods for problems involving primitive roots have been refined since
those described in [5] and [3] were formulated. A recent illustrative example occurs
in [4] and is a model for the line of argument pursued here.

Throughout, suppose that a and b are arbitrary given non-zero members of Fq.
For any g ∈ Fq set a− cg = g∗.

Let e be a divisor of q − 1. Call g ∈ Fq e-free if g 6= 0 and g = hd, where h ∈ Fq
and d|e, implies d = 1. The notion of e-free depends (among divisors of q− 1) only
on Rad(e). Moreover, in this terminology a primitive root of Fq is a (q − 1)-free
element. Next, given divisors e1, e2 of q − 1, define N(e1, e2) to be the number of
g ∈ Fq such that g is e1-free and g∗ is e2-free. In order to show that a prime power
q ∈ G we have to show that N(q− 1, q− 1) is positive (for every choice of a and c).
The value of N(e1, e2) can be expressed explicitly in terms of Jacobi sums over Fq
as follows. We have

(3) N(e1, e2) = θ(e1)θ(e2)

∫
d1|e1

∫
d2|e2

χd1(1/c)(χd1χd2)(a)J(χd1 , χd2).

Here, for a divisor e of q − 1, ∫
d|e

=
∑
d|e

µ(d)

φ(d)

∑
χd

,

where the sum over χd is the sum over all φ(d) multiplicative characters χd of Fq
of exact order d, and J(χd1 , χd2) is the Jacobi sum

∑
g∈Fq

χd1(g)χd2(1 − g). (All

multiplicative characters on Fq by convention take the value 0 at 0.)
Next, we present a combinatorial sieve. Let e be a divisor of q − 1. In practice,

this kernel e will be chosen such that Rad(e) is the product of the smallest primes
in q − 1. Use the notation of Theorem 2. In particular, if Rad(e) < Rad(q − 1) let
p1, . . . , ps, s ≥ 1, be the primes dividing q−1 but not e and set δ = 1−

∑s
i=1 2p−1

i .
In practice, it is essential to choose e so that δ > 0.

Lemma 1. Suppose e is a divisor of q − 1. Then, in the above notation,

(4) N(q − 1, q − 1) ≥
s∑
i=1

N(pie, e) +

s∑
i=1

N(e, pie)− (2s− 1)N(e, e).
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Hence
(5)

N(q−1, q−1) ≥
s∑
i=1

{[N(pie, e)−θ(pi)N(e, e)]+[N(e, pie)−θ(pi)N(e, e)]}+δN(e, e).

Proof. The various N terms on the right side of (4) can be regarded as counting
functions on the set of g ∈ Fq for which both g and g∗ are e-free. In particular,
N(e, e) counts all such elements, whereas, for example, N(pie, e), i ≤ s, counts
only those for which additionally g is pi-free. Since N(q− 1, q− 1) is the number of
e-free elements g for which g and g∗ are both pi-free for every i ≤ s, we see that, for
a given e-free g ∈ Fq, the right side of (4) clocks up 1 if g and g∗ are both primitive
and otherwise contributes a non-positive (integral) quantity. This establishes (4).
Since θ(pi) = 1 − 1/pi, the bound (5) is deduced simply by rearranging the right
side of (4). �

Lemma 2. Suppose that q ≥ 4 is a prime power and e is a divisor of q − 1. Then

(6) N(e, e) ≥ θ(e)2(q −W (e)2√q).
Moreover, for any prime l dividing q − 1 but not e, we have

(7) |N(le, e)− θ(l)N(e, e)| ≤ (1− 1/l)θ(e)2W (e)2√q.
and

(8) |N(e, le)− θ(l)N(e, e)| ≤ (1− 1/l)θ(e)2W (e)2√q.

Proof. Starting with the identity (3) we use the fact that when d1 = d2 = 1 (so that
χd1 = χd2 is the principal character of Fq), then χd1(1/c)(χd1χd2)(a)J(χd1 , χd2) =
q − 2. For all other character pairs (χd1 , χd2), as is well-known, this quantity has
absolute value

√
q (at most). Because there are, for example, φ(d1) characters χd1 of

order d1, when we take into account the implicit denominators φ(d1) and the Möbius
function within the integral notation, we obtain as an aggregate contribution to the
right side of (3) a quantity of absolute value at most

√
q from each pair of square-free

divisors d1, d2 of e, except the pair (1,1). Hence N(e, e) ≥ θ(e)2{q − 2− (W (e)2 −
1)
√
q}, which yields (6).

Further, from (3), since θ(le) = θ(l)θ(e),

N(le, e)− θ(l)N(e, e) = θ(l)θ(e)2

∫
d1|e

∫
d2|e

χld1(1/c)(χld1χd2)(a)J(χld1 , χd2).

Hence,

|N(le, e)− θ(l)N(e, e)| ≤ θ(l)θ(e)2W (e)(W (le)−W (e))
√
q,

which yields (7), since W (le) = 2W (e). Similarly, (8) holds. �

We now complete the proof of Theorem 2.

Proof. Assume δ > 0. From (5) and Lemma 2

N(q − 1, q − 1) ≥ θ(e)2

{
δ(q −W (e)2√q)−

s∑
i=1

2

(
1− 1

pi

)
W (e)2√q

}

= δθ(e)2√q
{
√
q −W (e)2 −

(
2s− 1

δ
+ 1

)
W (e)2

}
.

The conclusion follows. �
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